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We construct a system of piecewise-homogeneous solutions of the asymmetric 
problem of the theory of elasticity for an infinite cylinder whose surface is part- 

ly free of stresses and the remaining part is under the conditions of sliding sup- 
port. In particular, we obtain the exact solution of the problem of flexure of an 
infinite cylinder, acted upon by a moment and a force and embedded without 
friction in a semi-infinite absolutely rigid cylindrical band. The system is used 

for the solution of four periodic problems regarding the flexure of a cylinder by 
finite bands and also for the examination of those limiting cases in which the 

lengths of the adjacent bands or the distances between them areinfinitely large. 
All these problems are reduced to the Poincard-Koch normal systems. 

In applications, the most important cases are those nonaxisymmetlic contact 

problems for the elastic cylinder in which the interior boundaries of the bands 
represent surfaces of revolution and the bending of the cylinder is due only to 

the rotation and relative displacements of the bands (for example, bearings) or 
to its own weight. In the cylindrical coordinates Z, r, cp , the elastic displace- 
ments are then decomposed into axisymmetric ones [l] and those proportional 
to cos T. The latter case is studied in this paper. 

1. We consider two particular elements of the system of piecewise-homogeneous 
solutions, satisfying at the boundary r = 1 the conditions 

‘tr, = Trz = 0, --00 <z<oo (1.1) 

u*= 0, Z>O (1.2) 
5,= 0, z<o (1.3) 

% = 0 (z”), z++o, a>-1 (1.4) 

and determining the bending of the cylinder by a moment and a transverse force. We 
note that they cannot be constructed by analogy with the similar elements od the axi- 

symmetric problem [l]. The corresponding solutions in the neighborhood of the separa- 
tion line have an unbounded stress energy, namely, in spite of the condition (1.4). 6, = 

0 (z-“2) for r = 1, z --+ 0. 
We write the solution of the Papkovich-Neuber form 

ui = u cos-‘cp = 4 (1 - v) B, - dldr (rB, + B,) 

U2 = w cos-lqz = - i3 / i3z (rB, + B,) 

u3 = u sin-ltp = 4 (1 - v) B, - d / 8~ (BTU+ r-‘B,J 

AB,. - 2f2B, - PB, = 0, AB, - 2rm2B, - PB, = 0 

(1.5) 

(1.6) 
AB, = 0, A = a2 / Lb2 -{- r-l d / ar - re2 i_ a2 1 dz2 
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and we subject the relations (1.6) to the two-sided Laplace transform, Evaluating the 
functions B,, B, and B,, by the inversion formulas, we insert them into (1.5). By vir- 

tue of (1.1) we obtain 

nx @7 rf = & \ c (PI f, (I4 4 fP= QJ (1.7) 

f1 (PI 79 = [J,’ (r/d - :(j - Y) JFJ--‘J~ (pr)lAx (p) - 

[4 (1 - v> J1’ (PI + (P - P-W JI WI Az (P> - PJI’ (~9 As (~1 

fi (~7 I*) = Ji W AI (p> + PJI W A, (p) - PJI (PP> A1\3 (P) 

f3 (p, r) = i4 (1 - y) p-‘r-l J, (~4 - J1’ (prf 1 Az (p) + 

14 (1 - v) J1’ (pr) - p-l f-I J, (~41 Al (p> 4 r-’ Jl (pr> A, (P) 

Ia fp, d I- 2G (tp J1’ (pd - 2 (1 - ~1 reel JI (pr)I AX (p) + 

I(+ - p2’) J, tpr) - 2 (1 -yMl p JI’ (~91 A, (p) - p2 JI’ (pd A, (~1) 

f5 (p, 4 = 2G {pJ1 (P, 4 A1 (P) + [P’r Ji (pr) + 2~ J, @)I A2 (p>-- 
p2J1 W A 3 (~11 

fs (p, r) = 2G {D (1 - v> PJ~’ (pr) - r-l JI (pr)l A, (p) + 

la (1 - v)r- ’ JI lprl - PJ~’ t~r)l Aa (PI + P‘- JI (w>A8 (~1) 

f, (p, r) = 2G (f[ (5 - 4v) p-F -PI J, (~4 - (5-4~) f”Ji’(pr)l A, (p> + 

[1(3--2~) p-(5-4~) p- %-‘I J, (pr) + [(5--4~) r-l--p’rl JI’(pr)lx A, (p)-+- 

1 (p” - r-l) J, (pr) + pr-l J1’ @-)I A3 (p)} 
I8 (p7)=2G {b (5--4~)p’-“r-~- 2 (l-v) pl J1 (pr)7(5-4x9~“J,’ (pr)]&(p) -f- 

[(5-4v)r”l J1’ (pr) + Ip - (5 - 4~) pm1rw21 JI @r)lAz (p) + 

[pr+ Jl’ (pr) - rA2 JI t~+b (~1) 

f9 (p, r) = 2G ((5-4~) Ire1 Ji (pr) - pm1rm2J1 @-)I Al (p) + 

I[ (5-4~) pM1rea - (1-2~) pl J, (pr) - (5-4v)r-l J1’ &)I A, (p) + 

ka JI (pd - pf*J~’ (pr)lA3 (~11 

AI (PI = (P” - I) J: (p) - 2 (l- 9 PJ, ~P).L’ (P) 4- (3-w ~2 k2 (P) 

AL\, @I = 2 (1 - v) [(p” -PI J, (~1 Jr’ (~1 - Jx2 (P) t.2~” Jlf2 (~11 

A8 (~1 = [(I - 2%) (5 - 4v) p-l -/- (5 - 4v) p - 2 (I - v)p31 J,” (p) - 

4 (1 - Y) (2 - v) p2 J, (PI JI’ (P) - (1 - 24 (5 - 4~) pJi2 (P> 

U* = c&x- ql z,,, ug = cos-l (ps*, up = sin-l rpz,, (W 

U, = cos-$s,, u* = s”ln-1 9)TTT, Ug = cos-+.r, 

Here the contour L is chosen at the left of the imaginary axis, J, (pr) is the nth order 
Bessel function of the first kind and the prime denotes differentiation with respect to the 
argument. 

According to the conditions (1.2) and (X.3), the function C (p) satisfies the equations 

n- (p) = c (PI fr (P7 $17 o+ (P) = C (PI t7 (P, 1) (~4 
where 
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0 

u- (PI = s ul (2, I) e-pt dz, 6” (p) = 3 u7 (2, 1) e-p2 cl2 
-M 0 

~limi~ting it, we obtain the homogeneo~ Wiener-Hopf equation 

a* (p) = R (p) u- (p), K (PI = J% (P) BI-l (P) (1.10) 

1), (~)~f~ (p, +=-.-2 (1 - Y>( (p -p-$.G+ (p) --4 (1 - v> J1” (PI J&M- 

[2 (1 - Y) $ jr pl J, (p) J1lz (P) + 4 (I - ~1 P’ Jxr3 (P)) 

D, (PI = - 4G (1 - v) {(P5 - 3P3 -t 2 VP) JrS b) -t+ 

2P2 w - 1 -+- Zv) J,2 (p) J*’ (p) -I- p” (pa - 4 -I- 2v) Jl fP) Jl’e b) 4”” 

2p4 Ji3 @)I 

At the point p =: 0 the function 111 (p) has a zero of rnu~tipl~~~~ four and Ds (P) 
has a zero of rnu~ti~~~~ty eight. We show that these functions have no other pure ima- 

ginary zeros, generating non~~vial homogeneo~ soiutio~. 
The problem of the absence of pure imaginary zeros for the characteristic functions 

of the type I& (pf has been studied already in [Z], Sect. 4 at the proof of Saint-Ve~ant~s 
~inc~pie for a ~l~ndr~ca~ domain of an arb~tra~ cross section. However, multiple zeros 
are not considered in [27 and the condition of the absence of stresses at the bo~da~ of 
the cylinder is used in an essential manner. The analyses of the functions I& (p> and 
Dz (p) given below can be extended to all the other cases of homogeneo~ boundary 
conditions, for example to the case of the contact of the cylinder with an elastic shell, 

Thus, we assume that p = is is an n-fold imaginary zero of the function D1 {,z$ 

or L), @). Then p = - i/3 is a zero of the same multiplicity and the corresponding 
chain of homogeneo~ solutions rzx~;, satisfying for I” = 2, - co < z < w t the 
conditions 

+Xr, = IF).% .= ZJ r-1 0 or r,, = 7,,, = a,. = 0 
is represented in the form 

rMi = Re (ak / ‘7pfi [ fx (in, F> iP J )r,-;g (O<k<;n-1) 

According to (I.?), the functions fl ($) r), js (i@, T), f5 (Is, r) are even with res- 
pect to p , and therefore real, while fs (is, P), j4 (is, r), js ($I, r) are odd and ima- 
ginary : hence it follows that the functions alO, uQO, u 5o are proportional to cos pz 
and equal to zero at the ends of the cylinder r = 1, z = f 1 js nfi”*. By Kirchhoff’s 
~iquen~ss theorem, we have uXs E 0 and so fX (ifi, r> EG 0, But then zfXl = Re 
~@j~* ($, F)], where the asterisk denotes derivative with respect to /I. Since by a 
single differentiation with respect to p the parity changes to the opposite one. the func- 

tions usl, u4r, usr are proportional to eospa, u,~ ~0 and, consequently, fx* (ifi, 
r) z 0. Continuing these arguments, we obtain ~~1~ ZE 0 for all Ic, QED. 

Following ~33, we can prove that the larger zeros (gks, and bks (s = 1, 2, 3) of the 
fiction L>, (p) and L), (~1 in the right ha~f~~ane Rep > 0 (Ic = zi,&...) lie close 
to the zeros of the functions sin” (p - “i? n) eos (p - “/* n) and (2~ -j- CM 2~) 

cos (1, - s/e n), respectively; more exactly we have the asymptotic formulas 

ukt = ek2 -+- 0 (k-'lll k) =c k.S - ':'i n $. 0 fk-" In k) 

(1 bs = b,, ,-\., 0 {k-r In h-) = kTr -+- l/*X. -;- 0 (&%I&) (‘Ml) 
6k1 = 6,s = kn -{- r/,n -I- ii2 In I2 (2k + 1)nl + 0 (kwl 1x1 k) 
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The functions D, (p) and D, (P) are even, therefore the numbers u_kS = - ah-s 
and b_kS = - bk, are also their zeros. The functions D, (P) and D, (P) do not have 
other large zeros. The proof of the last assertion is carried out in the same way as in [3], 
except that the contours in Rouchk’s theorem have to be constructed in an other way. 

For the investigation of uks the contour consists of the segments 

( Imp 1 < lie In kn, Re p = f (k d- 3/4) z 

1 Rep 1 < (k + 3/4) n, Im p = f ‘i6 In kn 

while for the investigation of b,, of the segments 

1 Imp 1 < l/z M4 (2k + l)nl, Re p = + (k -l- “ih 

1 Re p I < (k + 3/J .71, Imp = * l/, In I4 (2k i- 1) nl 

The estimates (1.11) allow us to justify the convergence and the algebraic growth of 
the infinite products obtained as a result of the factorization 

K (p) = ~~~~ K- (p) UC+ (p)l-l, K, = ‘12 G (1 + y) 

K+(P) = [K- (- &I-’ = ii fi (1 + ~6:) (1 + p&t)-’ (1.12) 
n =1 s=t 

K+ (P) - l/‘/z (1 - v”) P3, P--too 

By virtue of (1.4). (1.12) and the generalized Liouville theorem [4], the solution of Eq. 

(1.10) has the form 
c+ (p) = (A OIP + A,,) DC+ (PV (1.13) 

The elastic displacements and the stresses (1.7) are expressed by the formulas 

UX 0s = ki \ ~I,,p2-~ [K+ (p) D2 @)I-’ ix (P, r) epz dp (s = 1,2) (1.14) 

i 
These solutions determine, in particular, the state of stress of an infinite cylinder which 

is fixed in the band r = 1, 0 < z < 00 and is bent by the moment ikf, applied at 

z = - co (Fig. (I) ), or by the tangential load,statically equivalent to the transverse 
force P and applied to the end of the cylinder z > - lo for lo ‘> 1 (2). In both 
cases the constants A,, are computed from the equilibrium conditions, imposed on the 

residues of the integrands (1.14) at the poles of order four : the remaining terms in the 
residue expansions are self-balanced. The exact solution of Problem 1 is given by the 
formulas (1.14) for 

s=l, A,,=n-w (1.15) 

The solution of Problem 2 is expressed by the sum u,pl f uXo2, where 

A oi = n-‘[p + K+*(O)] P, A o2 = n-lP (1.16) 

Due to the absence of the imaginary b,, , it holds in a domain sufficiently far from the 
ends, where the exponentially decreasing homogeneous solutions are damped. 

In both problems the stress concentration under the boundaries of the bands, by virtue 
of (1.12). (1.13) and the known estimates [4], having the form 

6, - 
2M cos cp 

Qr - 
2Pp c.ns cp 

n v2 (1 -VZ)ltZ ’ n 1/;2 (1 - YZ) nz 
(r=i, r-+0) (1.17) 

leads to a separation of the cylinder from half of the band edge. Comparing (1.17) 
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with the axisymmetric stresses under the band f = 1 - 6, 0 < z ( 00, placed on 
the cylinder r < 1, -co<Z<~ClI 

o, u - &‘$ (2 + 2v)% (3 - y)-+‘ln 2-‘/z (r = 1, z ---t + 0) 

we obtain the relation 

6 > 1 M + P p cos cpl f (1 - v)” InG (1 + vfl-1 (2.18) 

in which case under the entire edge of the bands we have compressive stresses. Here cp1 

is the angle between the planes of action of M and P. 
As the third fundamental element of the system we choose the rotation of the cylinder 

as a rigid body 
Ul 03 =A 03 2, a203 =A o3 r, $3 = -.A 03 2 (1.19) 

The subsystems of the piecew~se-homogeneous solutions, satisfying the ~nditio~ (1. l)- 
(1.4) and having an exponential growth for z --t & co, are written without proof, simi- 
lar to the axisymmetric case (13 

a/is, r) enksZ + 2; c g, (P) fx (P, r.) epz dp I (JC = 1,2, . .) (1.20) 
i 

u? = A,, fx(&, r) e’RsZ + Li\h, (p) fX (p, r)@dpi (k - -I,-2,. . .) 
i 

Here the relations (I, 5) and (1.8) between the functions zzxks and the real displacements 
and stresses are preserved ; if bk2 = 6 kl, then 

A/t2 = hi1 

g, (PI = - 
b:s h’oK- (- bks) Dr (bks) pa Kt (‘k,) Da (a,,) P2 

(P+bks)KffP)Da(P) ’ hk~p~~u~,(p_~k,)~~(p)Da(p) 

Expanding the integrals (1.26) into residue series, we can see that every element of 

these subsystems is balanced for z < 0 (this is done as in 153. except that we make use 
of the two constants occurring in (1.13)). and satisfies the mixed boundary conditions 

(1.1) - (1.3) and the equations.of the theory of elasticity. 
With the aid of the systems (1.14),(1.19), (1.20) we can solve the different mixed 

problems for the semi-infinite and finite cylinders, reducing them to infinite systems of 
algebraic equations having a normal determinant in the case of arbitrary end conditions. 
If at the end faces of the cylinder we are given combinations of w, T&, T,,, or of u, U, 
~~ , or if junction conditions are formulated (as in the case of the bending of an infinite 
cylinder by two finite bands), then the free terms in the systems of algebraic equations 
can be computed exactly. In other cases, for example the bending of a finite cylinder 
with unloaded ends by bands, the free terms are computed by the method of least squares. 

2, We consider bending problems for an infinite cylinder on which absolutely rigid 
cylindrical bands are placed periodically. Assume that the radii of the cylinder and of 
the bands are equal to unity, the distance between neighboring bands is 2p, their length 

is 2h, the semiplane cp = 0 coincides with the plane of the figure below the axis of the 
cylinder, there are no friction forces on the contact surfaces, and exrernal forces are 

applied only to the bands. 
The coordinate plane z = 0 is taken through the left end of a middle band. Then 
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the boundary conditions on the lateral surface of the cylinder - p < z < h, 0 < r < i 
for r = 1 , take in all problems the form 

The solution can be sought in the form of the series 

u)(= i iU/ 
A_=--0a s=t 

(2.2) 

determining the coefficients A kS from the conditions of periodicity and symmetry at 

the end faces z = - P, z = h and setting A,, = 0. 

Problem 3. The bands are placed periodically, the bending is accomplished only 

by two moments M, applied at z = & CC. In this case both ends are planes of symmetry 

and the boundary conditions have the form 

zgz (- p. r.) = z,, (- p, r) = 0, w (- p, r) = ar co.7 cp (2.3) 

Z,, (h, r) = Trz (IS, r) = w (A, r) = 0 (2.4) 

where 2a is the angle between the axes of neighboring bands. We expand the integrals 

which occur in the functions U! in residue series for .Z = -- p and z = h and we 

insert (1.14), (1.20) into (2.2). Interchanging the summation order in the double series 
and taking into account the equalities f, (- P, r) = - (-i)“f, @, r) (x = I,&..., G), 
we obtain 

uX (- p, r) = 5 i f, (his, r) [A_ka (- l)x+lebksp + eFbh-GL g 
k=l s=l 

i Anq$aqRn] + 
n=--m q=1 

fj i: ‘.Qcy (2.5) 
7L=---a q=i 

$,“,o = (- i)S+lb;;s [K+ (bkS) Dz* (b&-l 

p = 
b&K- I- bnq) D, (b,,) 

w ukf (aks -b,,) K- (-- aks) D1* (a,,) 
(I1 < - 1) 

x kn = _ K* (a,,) D, (a& 
SP 

x$! = [u~~‘K,,K- (- aks) D;@ &’ 

In - 
‘p, - ‘p?r-1 (p + ql) = - (p: = b,,K- (- b,,) D, (b,,) (P + W) (n < - 1) 

q$” = ‘pp-’ (p + ~1) = - ‘~3,‘1= K;‘a;K’ (a,,) D, (a,,) (P +. 11,) (n 2 1) 

(2.71 
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By virtue of the fact that the elements (1.20) are self-balancing and according to (1.15), 
we have A,, = no1 M+ Aoz = 0. We insert the series (2.5) into the conditions (2.3). 

We multiply both sides of the equalities (2.3) for x = 4,6,2 by f, (bks, r) , respectively, 
for x = i,3,5 and we integrate with respect to r from 0 to 1, Adding the first two 
equalities and subtracting the third one, by virtue of the generalized orthogonality rela- 

tion [63 1 

which holds for bksS # bllq2, we obtain the value of the rotation angle 

and the system (s = 1,2,3; k = i,2 ,.,.) 

Here 

Performing the same operations with the series (2.6) and making use of the relation 
(2.8) which holds if we replace birr by aXj [6], we obtain 

Ark8 + i e-%s” [ -2 ~~~~~~~~~~,~~~~ _/_ i X2>-%).X;1qj .= 6 (2.21) 

q=1 n=-1 n=0 

According to the estimates (1.11). the double series of the system (2. lo), (2.11) con- 
verge absolutely because of the exponential factors and the free terms of the system are 
bounded. Thus, (2. lo), (2.11) is .a normal Poincare-Koch system [7]. Based on the ortho- 
gonality relation (2.8) and on the Kirchhoff uniqueness theorem, we can establish the 
existence and uniqueness of its normal solution. 

Pro b 1 e m 4 is the limiting case of Problem 3 for p = co. From (2.10) it follows 

that Airs = 0 for k Q - 1. The unknowns A ifs for k 5 i are obtained ffom the system 

(2.11). whose matrix elements for n < - 1 are equal to zero. 
Pro b le m 5 is the limiting case of Problem 3 for h = ao. Obviously, Aks = 0 for 

k >, 1. The system (2.10) for the determination of Aks for k < - 1 can be simplified 
because of eiErLeA ;;13 0, 

Problem 6. loads are applied to the bands,statically equivalent to the bending 
moment ?M,. acting in the axial plane fp = 0 in one direction. The boundary condi- 

tions are u = aCoS (p, v = n sin cp, Gz := 0, z = - p, 0 < r < 1 (2.12) 
,A z z, zz o, z.z 0, z=h,O-<r<l (2.13) 

In the cross section z = - u the resultant vector of the tangential stresses is equal to 
M (h + Pf-1, therefore it follows from (1.16) that 

A,, =I “-‘Q-II + Pf(h i- 1$-‘-V, Aoz = 31-l (h --t- &-i M 
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In order to compute the remaining Aks and the magnitudes of the relative displacements 
of the neighboring bands, we insert (2.5) into (2.12). We multiply the equalities (2.12) 

for x = i,3,5 by f, (bksr r) for x = 4,6,2 , respectively. Integrating them withrespect’ 
to r from 0 to 1 and adding them, we obtain by virtue of (2.8)(s = 1,2,3; k = 1,2,...) 

(2.15) 

In a similar way we obtain from the conditions (2.13) 

(2.16) 

The system (2.14). (2.16) is similar to (2. lo), (2.11). 
Pro b 1 e m 7 is a special case of the preceding one for sufficiently large P-, when 

the numbers embkslL are so small that, taking into account (2.14). we can take 4ks = 0 

for k < --1, while for k > 1 we can find A ks from the system (2.16). As in Problem 

2, the solution near the end of a semi-infinite cylinder will be approximate. 

Problem 8 differs from Problem 6 by the fact that the given moments have alter- 
nating directions. Ia boundary conditions are (2.3), (2.13), the system for Atis is (2.10), 
(2.16). the rotation of neighboring bands is determined by formula (2.9). and 

A,1 = n-1 M, Aljz = 0. 

M ” M M 

Fig. 1 

Pro b le m 9 is obtained from the preceding one when P = DCI. For k < -1 we 

have Aks = 0, for k & 1 we obtain A ks from the truncated system (2.16). 
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Problem 10. There are loads on the band,statically equivalent to the forces ZP, 
applied at the middle of the bands along the radius in the plane cp = 0 and alternating 
in direction. Here the boundary conditions are (2.4), (2.12). the coefficients A ks are 

determined from the system (2.11),(2.14), the coefficients Aos from the formulas(l.l6), 
and the shift of neighboring bands from the series (2.15). 

Pro b 1 e m 11, similarly to Problems 2 and 7, can be solved for P 9 1. Then it is a 
special case of the Problem 10 for A ks=O forall k,(-l.Fork),l, Ak,aredeter- 
mined from (2.11). 

Problem 12 isa 1imitingcaseofProblemlOfor h= CXX. Here fork), l,Ak, = 

0, for k < - 1 , Aks are obtained from the truncated system (2.14) and the shift is 
obtained from (2.15). 

By the superposition of the solutions of the above considered problems we can inves- 
tigate the bending of cylinders under complicated conditions, for examp!e when the 
bands rotate and move in different axial planes or when excentric forces are applied to 
them. 
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